431 research outputs found

    Performance Verification of the FlashCam Prototype Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.Comment: 5 pages, 13 figures, Proceedings of the 9th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2016), Lake Bled, Sloveni

    FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    Full text link
    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.Comment: 8 pages, 6 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    Full text link
    We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity dust tests respectively. We present the experimental set-up adopted to perform the tests, status of the activities and some very preliminary results achieved at present time.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-24, 201

    The COSPIX mission: focusing on the energetic and obscured Universe

    Full text link
    Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the 25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger & C. van Eldik), PoS(Texas 2010)25

    The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study

    Get PDF
    Midostaurin (PKC412A), N-benzoyl-staurosporine, potently inhibits protein kinase C alpha (PKCα), VEGFR2, KIT, PDGFR and FLT3 tyrosine kinases. In mice, midostaurin slows growth and delays lung metastasis of melanoma cell lines. We aimed to test midostaurin's safety, efficacy and biologic activity in a Phase IIA clinical trial in patients with metastatic melanoma. Seventeen patients with advanced metastatic melanoma received midostaurin 75 mg p.o. t.i.d., unless toxicity or disease progression supervened. Patient safety was assessed weekly, and tumour response was assessed clinically or by CT. Tumour biopsies and plasma samples obtained at entry and after 4 weeks were analysed for midostaurin concentration, PKC activity and multidrug resistance. No tumour responses were seen. Two (12%) patients had stable disease for 50 and 85 days, with minor response in one. The median overall survival was 43 days. Seven (41%) discontinued treatment with potential toxicity, including nausea, vomiting, diarrhoea and/or fatigue. One patient had >50% reduction in PKC activity. Tumour biopsies showed two PKC isoforms relatively insensitive to midostaurin, out of three patients tested. No modulation of multidrug resistance was demonstrated. At this dose schedule, midostaurin did not show clinical or biologic activity against metastatic melanoma. This negative trial reinforces the importance of correlating biologic and clinical responses in early clinical trials of targeted therapies

    Host genotype and time dependent antigen presentation of viral peptides: predictions from theory

    Get PDF
    The rate of progression of HIV infected individuals to AIDS is known to vary with the genotype of the host, and is linked to their allele of human leukocyte antigen (HLA) proteins, which present protein degradation products at the cell surface to circulating T-cells. HLA alleles are associated with Gag-specific T-cell responses that are protective against progression of the disease. While Pol is the most conserved HIV sequence, its association with immune control is not as strong. To gain a more thorough quantitative understanding of the factors that contribute to immunodominance, we have constructed a model of the recognition of HIV infection by the MHC class I pathway. Our model predicts surface presentation of HIV peptides over time, demonstrates the importance of viral protein kinetics, and provides evidence of the importance of Gag peptides in the long-term control of HIV infection. Furthermore, short-term dynamics are also predicted, with simulation of virion-derived peptides suggesting that efficient processing of Gag can lead to a 50% probability of presentation within 3 hours post-infection, as observed experimentally. In conjunction with epitope prediction algorithms, this modelling approach could be used to refine experimental targets for potential T-cell vaccines, both for HIV and other viruses

    On the Origin and Spread of the Scab Disease of Apple: Out of Central Asia

    Get PDF
    Background Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information. Methodology/Principal Findings Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas. Conclusions/Significance Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.Contexte Venturia inaequalis est un champignon ascomycete responsable de la tavelure du pommier, une maladie qui a envahi presque toutes les régions du monde où le pommier est cultivé posant ainsi de graves problèmes en production. Prévenir et enrayer efficacement la réussite d’un tel succès invasif nécessite des connaissances approfondies sur l’origine, les voies d’introduction, la biologie et la génétique de ces populations invasives. En utilisant le potentiel d’inférence de la génétique des populations, l’analyse de la variation de marqueurs génétiques offre la possibilité d’accéder à ces informations. Méthodologie et Principaux résultats Ici nous présentons l’analyse de données microsatellites obtenues pour 1273 souches de V. inaequalis provenant de 28 vergers prélevées dans 7 régions sur les 5 continents. L’analyse de la variance moléculaire révèle que 88% de la variation se retrouve dans les vergers échantillonnés, ce qui est compatible avec d’importantes migrations historiques du champignon entre et à l’intérieur même des régions. Malgré cette très faible structuration des populations, les différentes analyses de clustering mettent en évidence un partage des populations en groupes séparés correspondant à leur origine géographique, montrant ainsi que chaque région héberge une population distincte du champignon. Ensemble, les résultats obtenus sur la comparaison du niveau de variabilité entre populations, les analyses de coalescence et les modèles de migration testés plaident en faveur d’un scénario dans lequel le champignon aurait émergé d’Asie Centrale, où le pommier a été domestiqué, avant d’être introduit en Europe puis plus récemment dans les autres continents suite à l’expansion de la culture du pommier. Les niveaux de variabilité indiquent que ces territoires ont subi des introductions multiples et que les populations portent toutes des signatures révélant de fortes expansions démographiques après leur introduction. Enfin, la forte diversité génotypique des populations et l’association aléatoire des allèles entre loci suggèrent que le champignon présente une reproduction sexuée régulière à la fois dans les régions où il a été introduit et dans sa région native. Conclusion et Portée. Venturia inaequalis est un modèle de champignons phytopathogène invasif qui a maintenant atteint le stade ultime du processus invasif, c’est à dire une très large distribution géographique par des populations bien établies montrant une grande diversité génétique, une reproduction sexuée régulière et une histoire d’expansion démographique
    corecore